lunes, 30 de enero de 2017

MATERIALES FERRICOS



Esta entrada lo que vamos a empezar hablando es que es el hierro, ya que esta entrada trata integramente sobre este material

El hierro o fierro es un elemento quimico de numero atomico 26 situado en el grupo 8, periodo 4 de la tabla periodica de los elementos. Su símbolo es Fe y tiene unamasa atomica de 55,6 u

Este metal de transicion es el cuarto elemento más abundante en la corteza terrestre, representando un 5 % y, entre los metales, solo el aluminio es más abundante; y es el primero más abundante en masa planetaria, debido a que el planeta en su núcleo, se concentra la mayor masa de hierro nativo equivalente a un 70 %.


El hierro que se utiliza en la industria suele proceder fundamentalmente de dos sitios:
                       a) De las minas.
                       b) De la chatarra, es decir, a través del reciclado de automóviles, electrodomésticos,.....

los usos del hierro entre otros; es para la obtención de aceros estructurales; también se producen grandes cantidades de hierro fundido y de hierro forjado. Entre otros usos del hierro y de sus compuestos se tienen la fabricación de imanes, tintes (tintas, papel para heliográficas, pigmentos pulidores) y abrasivos (colcótar).


Para la producción de hierro y acero son necesarios cuatro elementos fundamentales:
Mineral de hierro
Coque
Piedra caliza
Aire

Los tres primeros se extraen de minas y son transportados y prepararlos antes de que se introduzcan al sistema en el que se producirá el arrabio.

El arrabio es un hierro de poca calidad, su contenido de carbón no está controlado y la cantidad de azufre rebasa los mínimos permitidos en los hierros comerciales. Sin embargo es el producto de un proceso conocido como la fusión primaria del hierro y del cual todos los hierros y aceros comerciales proceden.

A la caliza, el coque y el mineral de hierro se les prepara antes de introducirse al alto horno para que tengan la calidad, el tamaño y la temperatura adecuada, esto se logra por medio del lavado, triturado y cribado de los tres materiales.
Clasificaccion de los aceros


• Aceros no aleados, o aceros al carbono: son aquellos en el que, a parte del carbono, el contenido de cualquiera de otros elementos aleantes es inferior a la cantidad mostrada en la tabla 1 de la UNE EN 10020:2001. Como elementos aleantes que se añaden están el manganeso (Mn), el cromo (Cr), el níquel (Ni), el vanadio (V) o el titanio (Ti). Por otro lado, en función del contenido de carbono presente en el acero, se tienen los siguientes grupos:


II) Aceros de medio carbono (0.25 < %C < 0.55)I) Aceros de bajo carbono (%C < 0.25)

III) Aceros de alto carbono (2 > %C > 0.55)



• Aceros aleados: aquellos en los que, además del carbono, al menos uno de sus otros elementos presentes en la aleación es igual o superior al valor límite dado en la tabla 1 de la UNE EN 10020:2001. A su vez este grupo se puede dividir en:

I) Aceros de baja aleación (elementos aleantes < 5%)

II) Aceros de alta aleación (elementos aleantes > 5%)




Estructuras estilograficas del acero

En este prezi he encontrado lo que es la cristalografia de los aceros y las estructuras, lo que interesa de este prezi; es decir; lo que esta relacionado con este apartado, es la primera parte de la presentacion, despues es informacion que no es relevante con respecto a este tema.


en los constituyentes de los aceros no he encontrado lo que significa pero supongo que sean los materiales de los que se forma el acero y dependiendo del material que sea le aportara al acero unas caracteristicas u otras.
lo que si he encontrado son los constituyentes del acero y sus caracteristicas que estan reflehadas en este slideshare.


la relacion entre los constituynetes y el tipo de grano


FERRITA



Aunque la ferrita es en realidad una solución sólida de carbono en hierro alfa, su solubilidad a la temperatura ambiente es tan pequeña que no llega a disolver ni un 0.008% de C. Es por esto que prácticamente se considera la ferrita como hierro alfa puro. La ferrita es el más blando y dúctil constituyente de los aceros. Cristaliza en una estructura BCC. Tiene una dureza de 95 Vickers, y una resistencia a la rotura de 28 Kg/mm2, llegando a un alargamiento del 35 al 40%. Además de todas estas características, presenta propiedades magnéticas. En los aceros aleados, la ferrita suele contener Ni, Mn, Cu, Si, Al en disolución sólida sustitucional. Al microscopio aparece como granos monofásicos, con límites de grano más irregulares que la austenita. El motivo de esto es que la ferrita se ha formado en una transformación en estado sólido, mientras que la austenita, procede de la solidificación.



La ferrita en la naturaleza aparece como elemento proeutectoide que acompaña a la perlita en:
- Cristales mezclados con los de perlita (0.55% C)

- Formando una red o malla que limita los granos de perlita (0.55% a 0.85% de C)

- Formando agujas en dirección de los planos cristalográficos de la austenita.



CEMENTITA
Es carburo de hierro y por tanto su composición es de 6.67% de C y 93.33% de Fe en peso. Es el constituyente más duro y frágil de los aceros, alcanzando una dureza de 960 Vickers. Cristaliza formando un paralelepípedo ortorrómbico de gran tamaño. Es magnética hasta los 210ºC, temperatura a partir de la cual pierde sus propiedades magnéticas. Aparece como:
- Cementita proeutectoide, en aceros hipereutectoides, formando un red que envuelve a los granos perlíticos.

- Componente de la perlita laminar.

- Componente de los glóbulos en perlita laminar.

- Cementita alargada (terciaria) en las uniones de los granos (0.25% de C)




PERLITA
Es un constituyente compuesto por el 86.5% de ferrita y el 13.5% de cementita, es decir, hay 6.4 partes de ferrita y 1 de cementita. La perlita tiene una dureza de aproximadamente 200 Vickers, con una resistencia a la rotura de 80 Kg/mm2 y un alargamiento del 15%. Cada grano de perlita está formado por láminas o placas alternadas de cementita y ferrita. Esta estructura laminar se observa en la perlita formada por enfriamiento muy lento. Si el enfriamiento es muy brusco, la estructura es más borrosa y se denomina perlita sorbítica. Si la perlita laminar se calienta durante algún tiempo a una temperatura inferior a la crítica (723 ºC), la cementita adopta la forma de glóbulos incrustados en la masa de ferrita, recibiendo entonces la denominación de perlita globular.



AUSTENITA
Este es el constituyente más denso de los aceros, y está formado por la solución sólida, por inserción, de carbono en hierro gamma. La proporción de C disuelto varía desde el 0 al 1.76%, correspondiendo este último porcentaje de máxima solubilidad a la temperatura de 1130 ºC.La austenita en los aceros al carbono, es decir, si ningún otro elemento aleado, empieza a formarse a la temperatura de 723ºC. También puede obtenerse una estructura austenítica en los aceros a temperatura ambiente, enfriando muy rápidamente una probeta de acero de alto contenido de C a partir de una temperatura por encima de la crítica, pero este tipo de austenita no es estable, y con el tiempo se transforma en ferrita y perlita o bien cementita y perlita.
Excepcionalmente, hay algunos aceros al cromo-niquel denominados austeníticos, cuya estructura es austenítica a la temperatura ambiente. La austenita está formada por cristales cúbicos de hierro gamma con los átomos de carbono intercalados en las aristas y en el centro. La austenita tiene una dureza de 305 Vickers, una resistencia de 100 Kg/mm2 y un alargamiento de un 30 %. No presenta propiedades magnéticas.
MARTENSITA

Bajo velocidades de enfriamiento bajas o moderadas, los átomos de C pueden difundirse hacía afuera de la estructura austenítica. De este modo, los átomos de Fe se mueven ligeramente para convertir su estructura en una tipo BCC. Esta transformación gamma-alfa tiene lugar mediante un proceso de nucleación y crecimiento dependiente del tiempo (si aumentamos la velocidad de enfriamiento no habrá tiempo suficiente para que el carbono se difunda en la solución y, aunque tiene lugar algún movimiento local de los átomos de Fe, la estructura resultante no podrá llagar a ser BCC, ya que el carbono está “atrapado” en la solución). La estructura resultante denominada martensita, es una solución sólida sobresaturada de carbono atrapado en una estructura tetragonal centrada en el cuerpo. Esta estructura reticular altamente distorsionada es la principal razón para la alta dureza de la martensita, ya que como los átomos en la martensita están empaquetados con una densidad menor que en la austenita, entonces durante la transformación (que nos lleva a la martensita) ocurre una expansión que produce altos esfuerzos localizados que dan como resultado la deformación plástica de la matriz.

Después de la cementita es el constituyente más duro de los aceros. La martensita se presenta en forma de agujas y cristaliza en la red tetragonal. La proporción de carbono en la martensita no es constante, sino que varía hasta un máximo de 0.89% aumentando su dureza, resistencia mecánica y fragilidad con el contenido de carbono. Su dureza está en torno a 540 Vickers, y su resistencia mecánica varía de 175 a 250 Kg/mm2 y su alargamiento es del orden del 2.5 al 0.5%. Además es magnética.


BAINITA
Se forma la bainita en la transformación isoterma de la austenita, en un rango de temperaturas de 250 a 550ºC. El proceso consiste en enfriar rápidamente la austenita hasta una temperatura constante, manteniéndose dicha temperatura hasta la transformación total de la austenita en bainita.
LEDEBURITA
La ledeburita no es un constituyente de los aceros, sino de las fundiciones. Se encuentra en las aleaciones Fe-C cuando el porcentaje de carbono en hierro aleado es superior al 25%, es decir, un contenido total de 1.76% de carbono.



La ledeburita se forma al enfriar una fundición líquida de carbono (de composición alrededor del 4.3% de C) desde 1130ºC, siendo estable hasta 723ºC, decomponiéndose a partir de esta temperatura en ferrita y cementita













Tratamientos del acero







Para cambiar las propiedades del acero se usan diferentes tipos tratamientos térmicos, que cambian su micro estructura.

En general hay cuatro tipos básicos de tratamiento térmico:




1.- Temple.2.- Revenido.

3.- Recocido.4.- Normalización.

Todos los tratamientos térmicos tiene una ruta obligatoria:




1.- Calentamiento del acero hasta una temperatura determinada.2.- Permanencia a esa temperatura cierto tiempo.

3.- Enfriamiento más o menos rápido.



El hierro tiene una temperatura de fusión de 1539 oC, y en estado sólido presenta el fenómeno de la alotropía o polimorfismo. En la mayoría de los casos, el calentamiento del acero para el temple, normalización y recocido se hace unos 30-50 oC por encima de la temperatura de cambio alotrópico. Las temperaturas mayores, si no son necesarias para un uso especial, no son deseables para evitar un crecimie



El carácter de la transformación del acero depende de la velocidad de enfriamiento. Durante un enfriamiento lento en el horno se verifica el recocido; si el enfriamiento se realiza al aire libre, tal recocido se denomina normalización.
El temple se hace utilizando un enfriamiento rápido en agua o en aceite.
Después del temple, obligatoriamente, se ejecuta el revenido, cuyo objetivo es disminuir en algo la uniformidad de la estructura y, de tal modo, quitar las tensiones internas de la pieza. El revenido siempre se realiza a una temperatura menor a la de la transformación del material.
nto excesivo del grano.

en este enlace te dejo los tipos e enfriamiento que se pueden poducir
https://www.uam.es/docencia/labvfmat/labvfmat/practicas/practica4/tipos%20de%20enfriamiento.htm